Minería

Spanish

Researchers at Universidad de Santiago develop bio-filter to adsorb copper from mining wastewaters

Researchers at Universidad de Santiago develop bio-filter to adsorb copper from mining wastewaters

  • A research team at the Faculty of Chemistry and Biology led by Dr Claudia Ortiz Calderón developed a device based on Chilean brown algae and pumice stone, which is able to adsorb copper from copper-bearing solutions produced by mining industry.

 

 

A research team at the Faculty of Chemistry and Biology led by Dr Claudia Ortiz Calderón developed a device based on Chilean brown algae and pumice stone, which is able to adsorb copper from copper-bearing solutions produced by mining industry.

Dr Ortiz, who is in charge of the Laboratory of Vegetable Biochemistry and Phytoremediation of the university, says that this study is part of the research that they usually conduct on the use of plants for environmental remediation.

Using this new device, it is possible to adsorb copper from copper-bearing streams to recover ions and send them back to the mining process, and clean the waters to use them again. Dr Ortiz says that they are already studying the effectiveness of the bio-filter with other metals, what could attract the interest of different companies.

Basically, the bio-filter is a vertical-flow column that contains three types of brown algae – which are very common in the Chilean coast- and pumice stone arranged in a way that is able to capture copper.

“First, we collect the algae and then, after washing, drying, chopping and screening them to a specific size, we package them together with pumicite or pumice stone that prevents the algae from getting compressed,” Dr Ortiz says.

She emphasizes that, in order no produce the bio-filter, they do not require to collect living biomass or to harvest algae. As they use waste algae and do not pre-treat the biomass, the bio-filter has a low cost of production. 

Patent request

The project started in 2012 and was funded by Corfo (the Chilean Economic Development Agent). It is currently at a protection stage after filing a patent request for the packaging system.

The next step is to continue with the analyses to determine the effectiveness of the bio-filter with other metals.

“We know that the bio-filter works very well for copper and we have also tested other equivalent cations, like zinc, cobalt and cadmium, and they have usually worked quite well too,” Dr Ortiz says.

“Thus, companies or industrial processes generating these elements which are interested in removing or recycling them could also be interested in the filter.”

In this context, the Canadian company Good Harbor that supported the project by conducting the hydraulic study of the columns has already expressed its interest in acquiring the rights of this new product.

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop bio-filter to adsorb copper from mining wastewaters

Researchers at Universidad de Santiago develop bio-filter to adsorb copper from mining wastewaters

  • A research team at the Faculty of Chemistry and Biology led by Dr Claudia Ortiz Calderón developed a device based on Chilean brown algae and pumice stone, which is able to adsorb copper from copper-bearing solutions produced by mining industry.

 

 

A research team at the Faculty of Chemistry and Biology led by Dr Claudia Ortiz Calderón developed a device based on Chilean brown algae and pumice stone, which is able to adsorb copper from copper-bearing solutions produced by mining industry.

Dr Ortiz, who is in charge of the Laboratory of Vegetable Biochemistry and Phytoremediation of the university, says that this study is part of the research that they usually conduct on the use of plants for environmental remediation.

Using this new device, it is possible to adsorb copper from copper-bearing streams to recover ions and send them back to the mining process, and clean the waters to use them again. Dr Ortiz says that they are already studying the effectiveness of the bio-filter with other metals, what could attract the interest of different companies.

Basically, the bio-filter is a vertical-flow column that contains three types of brown algae – which are very common in the Chilean coast- and pumice stone arranged in a way that is able to capture copper.

“First, we collect the algae and then, after washing, drying, chopping and screening them to a specific size, we package them together with pumicite or pumice stone that prevents the algae from getting compressed,” Dr Ortiz says.

She emphasizes that, in order no produce the bio-filter, they do not require to collect living biomass or to harvest algae. As they use waste algae and do not pre-treat the biomass, the bio-filter has a low cost of production. 

Patent request

The project started in 2012 and was funded by Corfo (the Chilean Economic Development Agent). It is currently at a protection stage after filing a patent request for the packaging system.

The next step is to continue with the analyses to determine the effectiveness of the bio-filter with other metals.

“We know that the bio-filter works very well for copper and we have also tested other equivalent cations, like zinc, cobalt and cadmium, and they have usually worked quite well too,” Dr Ortiz says.

“Thus, companies or industrial processes generating these elements which are interested in removing or recycling them could also be interested in the filter.”

In this context, the Canadian company Good Harbor that supported the project by conducting the hydraulic study of the columns has already expressed its interest in acquiring the rights of this new product.

Translated by Marcela Contreras

Subscribe to RSS - Minería