Researchers look for an “intelligent” controlled drug-delivery system

·         The drugs we use are delivered into our bodies in a short time because they are designed to be adsorbed at the intake and to lose effect some time later. In this field, the first results of a study at Universidad de Santiago are very valuable. The research team looked for an “intelligent” drug-delivery system; i.e. a system for a sustained release of the required dose to increase the drug efficacy. 

 

To understand the mechanisms that would allow in the future releasing drugs in the best place and at the best time, was one of the goals of the study led by Dr Eduardo Lissi, professor at the Faculty of Chemistry and Biology.

Nowadays, the drugs we use are delivered into our bodies in a short time; i.e., they are designed to be adsorbed at the intake and to lose effect some time later.

The purpose of the study was to understand the factors and cellular processes involved in this type of mechanism and Dr Eduardo Lissi, researcher at Universidad de Santiago, together with the Protein Research Group of the Faculty of Biology of Universidad de la Habana (Cuba) and researchers Alexis Aspee (Universidad de Santiago) and Marco Antonio Soto (Pontificia Universidad Católica de Chile), undertook the project.

“I think this is very interesting: designing “intelligent” systems for a particular effect, placing the carrier in the right place to control there the delivery of the bio-active species,” he says.

He adds that he is very “impressed for the magnitude of the problem and for having the possibility of connecting basic biophysics with its applications, particularly with those related to the potential for elaborating specific drugs especially for a given system.”

According to Dr Lissi, these “intelligent” systems would offer advantages in their application, like designing drugs that are released, “for example, when the host reaches a given temperature and/or a given osmotic gradient.” This would assure a sustained delivery of the dose of the required drug and increase its efficacy.

Another aspect of the study, which is still being worked on, is related to the ability of haemolytic toxins to generate channels that contribute to control cell damage. “This involves and interesting potential to selectively kill cell groups that you want to eradicate,” Dr Lissi says. The name of the project was Fondecyt 1130867, “Studies on the diffusion of small solutes through lipids bilayers in unilamellar liposomes."

 

Translated by Marcela Contreras